July 2021 AAIC 2021 Reference Slides for AL001 Phase 2 INFRONT-2 study results ALECTOR

Results to be presented at AAIC on July 29, 2021

12-month data in up to 12 symptomatic FTD-GRN patients and 10 GENFI2-matched historical controls

Primary endpoint

Safety and tolerability in symptomatic FTD-GRN patients

Secondary endpoint

Progranulin level changes in plasma and cerebrospinal fluid (CSF)

Exploratory endpoints

- Changes in biomarkers of lysosomal dysfunction, complement activation and neuronal health at 12 months
 - PGRN levels, CTSD and LAMP1, C1QB, Nfl
- Changes in volumetric MRI
- Changes in CDR® plus NACC-FTD-SB cognitive scale at 12 months

Creating a matched historical control cohort to contextualize clinical outcome assessments from the INFRONT-2 Phase 2 study in symptomatic FTD-*GRN* patients

Approximating the effects of randomization using propensity score matching

Propensity score matching is an established statistical technique to construct a synthetic control group by matching treated subjects with non-treated subjects of similar characteristics to more accurately estimate the effect of a treatment.

Example use case: Assessing causal inference between taking aspirin and mortality benefit

<u>Before Matching:</u> p values suggest marked imbalance between treated and untreated groups

Baseline Characteristics According to Aspirin Use (<u>before</u> matching)				Baseline Characteristics By Aspirin Use (in %) (before matching)				
Variable	Aspirin* (n = 2310)	No Aspirin* (n = 3864)	P value	Variable	Aspirin (n = 2310)	No Aspirin (n = 3864)	P value	
Age, years	62 (11)	56 (12)	< .001	Men	77.0	56.1	< .001	
Body mass index, kg/m ²	29 (5)	30 (7)	< .001	Clinical history: diabetes	16.8	11.2	< .001	
Ejection fraction, %	50 (9)	53 (7)	< .001	hypertension	53.0	40.6	< .001	
Resting heart rate, beats/min	74 (13)	79 (14)	< .001	prior coronary artery disease	69.7	20.1	< .001	
Resting systolic BP, mm Hg	141 (21)	138 (20)	< .001	congestive heart failure	5.5	4.6	.12	
Resting diastolic BP, mm Hg	85 (11)	86 (11)	.04	Medication use: Beta-blocker	35.1	14.2	< .001	
Heart rate recovery, beats/min	28 (11)	30 (12)	< .001	ACE inhibitor	13.0	11.4	< .001	
Peak exercise cap., men (METs)	8.6 (2.4)	9.1 (2.6)	< .001	Baseline characteristics appear very dissimilar: 25 of 31 covariates have p < .001, 28 of 31 have p < .05. Aspirin user covariates indicate higher mortality risk.				
Peak exercise capacity, women	6.6 (2.0)	7.3 (2.1)	< .001					

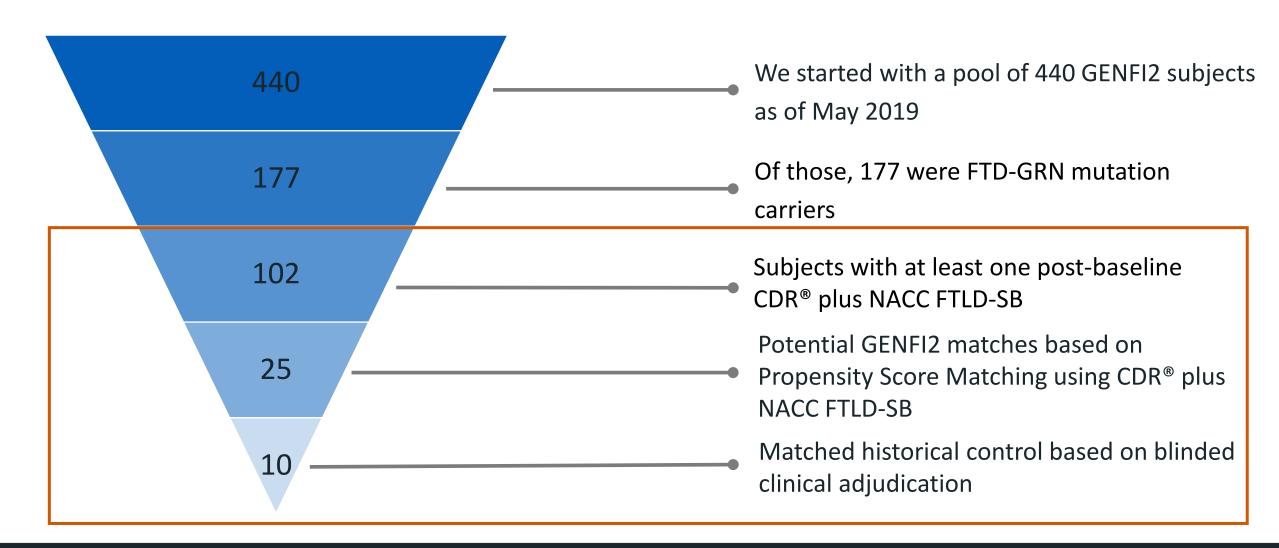
- Hazard Ratio (time to death) = 1.08 (95% CL: 0.85 1.39)
- Conclusion: aspirin <u>does not reduce</u> mortality risk

After Matching: p values suggest comparability between treated and untreated groups allowing a more accurate estimate of treatment benefit

Aspirin Use (after matching)				Use [%] (after matching)				
Variable	Aspirin* (n = 1351)	No Aspirin* (n = 1351)	P value	Variable	Aspirin (n = 1351)	No Aspirin (n = 1351)	P value	
Age, years	60 (11)	61 (11)	.16	Men	70.4	72.1	.33	
Body mass index, kg/m ²	29 (6)	29 (6)	.83	Clinical history: diabetes	15.0	15.3	.83	
Ejection fraction, %	51 (8)	51 (9)	.65	hypertension	50.3	51.7	.46	
Resting heart rate, beats/min	77 (13)	76 (14)	.13	prior coronary artery disease	48.3	48.8	.79	
Resting systolic BP, mm Hg	141 (21)	141 (21)	.68	congestive heart failure	5.8	6.6	.43	
Resting diastolic BP, mm Hg	85 (11)	86 (11)	.57	Medication use: Beta-blocker	26.1	26.5	.79	
Heart rate recovery, beats/min	28 (12)	28 (11)	.82	ACE inhibitor	15.5	15.8	.79	
Peak exercise cap., men (METs)	8.7 (2.5)	8.3 (2.5)	.01	Baseline characteristics similar in matched users and non-users.				
Peak exercise capacity, women	6.5 (2.0)	6.7 (2.0)	.13	 30 of 31 covariates show NS and non-users. [Peak exercise 				

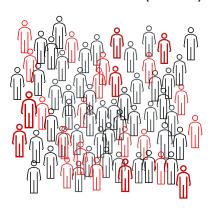
- Hazard Ratio (time to death) = 0.67 (95% CL: 0.51 0.87)
- Conclusion: aspirin reduces mortality risk

Objective: Create a matched historical control for the Phase 2 INFRONT-2 study of AL001


Using the GENFI2 FTD registry, we set out to create a cohort of <u>untreated</u> participants ("GENFI2 matched historical control") that is comparable, based on prospectively identified observed covariates, to a cohort of <u>treated</u> patients that participated in the Phase 2 INFRONT-2 study of AL001.

• Genetic Frontotemporal Dementia Initiative (GENFI) is a group of research centers across Europe and Canada focused on familial FTD

- The aim of the group is to understand more about genetic FTD, particularly in those who have mutations in the progranulin (GRN), microtubule-associated protein tau (MAPT) and chromosome 9 open reading frame 72 (C9orf72) genes
- GENFI investigates both people who have developed symptoms of FTD and also people who have a risk of developing symptoms in the future because they carry an abnormal genetic mutation
- The organization follows carriers and tracks their disease progression over time using a number of markers including clinical outcome assessments, neuropsychology, imaging, biomarkers and genetics

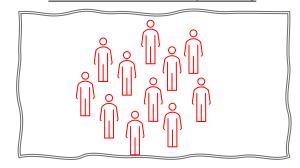

GENFI2 matched cohort selection overview

A two-step matching strategy to eliminate potential confounding factors was used to construct the GENFI2 matched historical control cohort

Step 1

GENFI2 FTD-GRN
participants with at least
one post-baseline CDR® plus
NACC FTLD-SB (n=102)

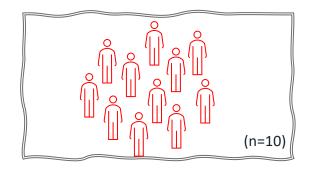
Propensity score matching by baseline CDR®-SB


Potential GENFI2 matches using propensity score matching based on CDR® plus NACC FTLD-SB (n=25)

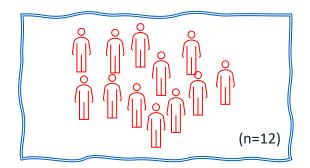
Step 2

Blinded clinical adjudication matching by NfL at baseline, age, diagnosis and gender

GENFI2 matched historical control cohort (n=10)


- Propensity scores were computed using a logistic regression including the most important covariate, cognition, measured at baseline using the CDR® plus NACC FTLD-SB
- Matching was done by comparing the logit propensity score

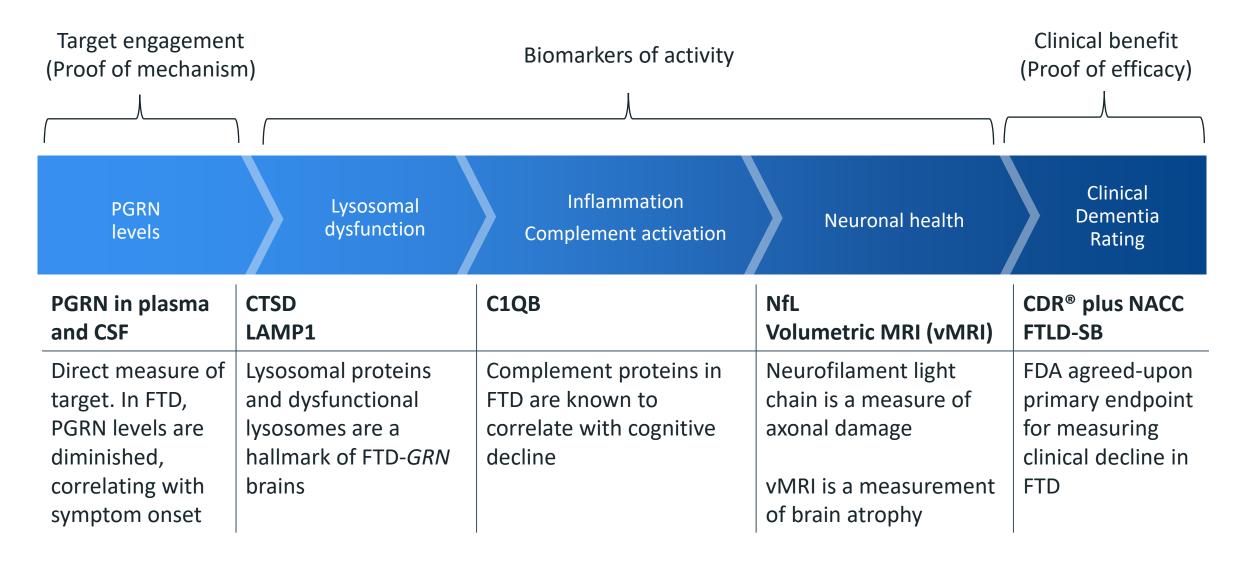
- To further increase the chances that the matched historical control cohort would mimic a placebo group in a randomized experiment, clinical adjudication of secondary covariates, including NfL at baseline, age, diagnosis and gender were used to refine and construct the final matched historical control cohort
- This step was done on a blinded basis



Creating a relevant context for the 12-month ALOO1 Phase 2 INFRONT-2 results

GENFI2 matched historical control cohort

AL001 INFRONT-2 FTD-GRN cohort



- Through the two-step matching process, the resulting **GENFI2** matched historical control cohort has comparable baseline characteristics to the **Phase 2 INFRONT-2 study** participants
- Thus, similar to the Aspirin example (see Slide 4), a comparable control group allows us to make meaningful comparisons and more accurately estimate any treatment benefit associated with AL001

Selection of biomarkers

Measuring the effects of AL001 on FTD-GRN disease cascade

Publication references

Progranulin in FTD / FTD disease cascade

The lysosomal function of progranulin, a guardian against neurodegeneration

https://pubmed.ncbi.nlm.nih.gov/29744576/

Progranulin in neurodegenerative disease

https://pubmed.ncbi.nlm.nih.gov/24800652/

Progranulin, lysosomal regulation and neurodegenerative disease

https://pubmed.ncbi.nlm.nih.gov/28435163/

New directions in clinical trials for frontotemporal lobar degeneration: Methods and outcome measures

https://pubmed.ncbi.nlm.nih.gov/31668596/

Progranulin as a therapeutic target for dementia

https://pubmed.ncbi.nlm.nih.gov/29889573/

CDR® plus NACC FTLD-SB

Background on the CDR plus NACC FTLD-SB scale from a study done by UCSF to examine if memantine could slow down decline in cognition

https://pubmed.ncbi.nlm.nih.gov/23290598/

Biomarkers of activity

CTSD, LAMP1, C1QB levels are elevated in GRN knock-out mice (Huang et al. 2020)

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-020-01037-x

CTSD, LAMP1 levels are elevated in post-mortem brains of FTD-GRN mutation carriers (Gotzl et al. 2014)

https://link.springer.com/article/10.1007%2Fs00401-014-1262-6

Complement protein C1Q (of which C1QB is a subunit) promotes TDP-43 granule development in GRN knock-out mice (Zhang et al. 2020)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746606/

Increasing complement protein C1QA (another subunit of C1Q) levels correlate with cognitive function decline in FTD-GRN mutation carriers (Liu et al. 2016)

 https://www.cell.com/cell/fulltext/S0092-8674(16)30392-0? returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0 092867416303920%3Fshowall%3Dtrue

Neurofilament light chain (NfL) (Van der Ende et al. 2019; Rojas et al. 2021)

- https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(19)30354-0/fulltext
- https://n.neurology.org/content/96/18/e2296

ALECTOR